
Meet the new generation of Additive Manufacturing
MX-Standard
DED Machine with DMT & 5-Axis AM CAM

Features
- Highly functional component production, re-modeling, repairing and special coatings
- Excellent mechanical properties
- Commercial metal powders can be used
- Enables manufacture of complex structures
- Enables repair of parts

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>MX-600</th>
<th>MX-1000</th>
<th>MX-Grande [custom]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser type</td>
<td>Fiber Laser</td>
<td>Max. 1,000W</td>
<td>Max. 2,000W</td>
</tr>
<tr>
<td>DMT Motion</td>
<td>XYZ Linear Gantry + AC Rotary stage</td>
<td>450 x 600 x 380</td>
<td>800 x 1000 x 680</td>
</tr>
<tr>
<td></td>
<td>X/Y/Z Stroke</td>
<td>-100 – +5° / 360°</td>
<td>-100 – +5° / 360°</td>
</tr>
<tr>
<td></td>
<td>A/C Stroke</td>
<td>4000 x 1000 x 1000</td>
<td>-100 – +5° / 360°</td>
</tr>
<tr>
<td>Control System</td>
<td>PC-based Control System with Touch Screen</td>
<td>DMT™ Closed Loop Feedback Control system</td>
<td></td>
</tr>
</tbody>
</table>

Excellent mechanical properties
Metal parts printed by DMT™ have superior mechanical properties, high density and fine microstructures.

MPC
Porous Coating Machine

Features
- Titanium porous structure application
- MPC (Machine for Porous Coating) was originally developed for application in orthopedic implant surface coating.
- The system is currently being used for artificial knee & hip joint coating.

Features
- Titanium porous structure application
- MPC (Machine for Porous Coating) was originally developed for application in orthopedic implant surface coating.
- The system is currently being used for artificial knee & hip joint coating.

MPC
Porous Coating Machine

Features
- Titanium porous structure application
- MPC (Machine for Porous Coating) was originally developed for application in orthopedic implant surface coating.
- The system is currently being used for artificial knee & hip joint coating.

Features
- Titanium porous structure application
- MPC (Machine for Porous Coating) was originally developed for application in orthopedic implant surface coating.
- The system is currently being used for artificial knee & hip joint coating.

MX-Lab
DED & Material research machine

Features
- Simple system for easy entrance of DED
- 5-Axis system & DMT Technology
- Focus on material research
- More accurate powder feeding system (CVM)
- 2nd generation AM module technology applied

DMT
Materials
- **UTS (MPa)**
- **YS (MPa)**
- **Elongation %**
- **Hardness [HRc]**

<table>
<thead>
<tr>
<th>Materials</th>
<th>UTS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation</th>
<th>Hardness [HRc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMT™</td>
<td>Vertical</td>
<td>1327</td>
<td>1420</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>1398</td>
<td>1477</td>
<td>5%</td>
</tr>
<tr>
<td>Forging</td>
<td>1321</td>
<td>1385</td>
<td>9%</td>
<td>S1</td>
</tr>
</tbody>
</table>

The data represents the condition with no heat treatment
DMT® Technology

The most precise DED technology

DMT®, Direct Metal Tapping, developed by INSSTEK is categorized as Direct Energy Disposition (DED) technology according to ASTM standards. Using 2 vision cameras, DMT technology analyzes and controls the height of the molten pool in real-time.

<table>
<thead>
<tr>
<th>Applicable Materials for DMT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium</td>
<td>CP-Ti6Al4V, Ti6Al4V</td>
</tr>
<tr>
<td>Steel</td>
<td>P90, P21, P13</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>304, 316, 420</td>
</tr>
<tr>
<td>Nickel</td>
<td>600, 625, 690, 713, 718</td>
</tr>
<tr>
<td>Hastelloy</td>
<td>22, 276</td>
</tr>
<tr>
<td>Copper</td>
<td>Co-65, AlBronze</td>
</tr>
<tr>
<td>Cobalt</td>
<td>CoCr. Stellite 20, 25</td>
</tr>
</tbody>
</table>

Multi Optic

Cartridge type optic system

<table>
<thead>
<tr>
<th>Type</th>
<th>SDM800</th>
<th>SDM1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Size</td>
<td>800μm</td>
<td>1200μm</td>
</tr>
<tr>
<td>Build Speed</td>
<td>4.3 cm/h</td>
<td>12 cm/h</td>
</tr>
<tr>
<td>Beam Profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active Splitter

Co-axial type powder splitter with power

- Co-axial type powder splitter
- Small amount of powder can be divided evenly
- Easy to use (No need of calibration of mechanical adjustments)

CVM Powder System

Next generation of powder feeding system

CVM (Clogged Vibration Method) powder feeder is an advanced type of powder feeding system. It has remarkably stable powder feed rate, a semi-permanent lasser, and a broad feeding rate range. It can feed titanium powder from 0.5g/min to 10g/min with no hardware change. Also, the gravity powder supply method and direct powder supply method with gas is applicable in the DED process.

CVM Powder Feeding Test for 12 hours

- **CVM (Clogged Vibration Method) type powder feeder**
- Feeds multi materials at the same time
- Gradually adjustable powder feed rate
- Not affected by metal powder ductility or shape
- Feed rate range 0.5 - 10 g/min (based on Ti)
- Gravity / direct feeding available
- Impressively stable powder feed rate
Simultaneous 5-Axis AM-CAM
Perfect Solution for Simultaneous 5-Axis AM-CAM

Simultaneous 5-Axis AM-CAM is one of the most important technology of INSTTEK’s DED additive manufacturing. Combined with INSTTEK’s years of know-how, Simultaneous 5-Axis AM-CAM enables us to overcome the limitations of existing DED technology. We are breaking the limits of additive manufacturing.
Multi Material Valve
Bi-material technology for anti-corrosion
Material: SUS 316 (Outer), Inconel 625 (Inner)

Jet Engine Air Seal
Repairing for Korean Air Force
Restoration of damaged turbine engine part was required. Originally, restoration took a minimum of 3 months. INSTEX reduced the cost and time dramatically.
Material: Ti-6Al-4V

Automobile Engine
Cladding on valve seat for fuel-efficiency
INSTEX’s 5-Axis technology increased fuel efficiency up to 2% in an automobile engine by cladding the valve seat of the intake port side of the engine.
Material: Classified

Turbine Vane Ring
Made with Simultaneous 5-Axis CAM
Material: Ti-6Al-4V

Jet Engine Air Seal
Repairing for Korean Air Force
Restoration of damaged turbine engine part was required. Originally, restoration took a minimum of 3 months. INSTEX reduced the cost and time dramatically.
Material: Ti-6Al-4V

Multi Material Valve
Bi-material technology for anti-corrosion
Research was conducted to make a new type of valve using multi material. An inconel valve was manufactured using Simultaneous 5-Axis motion.
Material: SUS 316 (Outer), Inconel 625 (Inner)

Automobile Engine
Cladding on valve seat for fuel-efficiency
INSTEX’s 5-Axis technology increased fuel efficiency up to 2% in an automobile engine by cladding the valve seat of the intake port side of the engine.
Material: Classified

Artificial Joint
Porous coating process
In cooperation with a global leading artificial knee and hip joint manufacturer, INSTEX developed a hip joint coating process which optimized operational efficiency, including delivery and cost management.
Material: CoCr & Ti-6Al-4V (Substrate), Pure Ti (Porous Layer)
Creating innovative solutions for challenges in medical industries

Examples of medical applications

IDEAL POROSITY
Surface roughness ensured with porosity higher than 60% and ideal porosity (pore size: 100-400μm) that strengthens interfacial bonding between coating layer and substrate as well as biological fixation with bone.

SUPERIOR CUSTOMIZATION
Entirely customizable for cups, knees, shoulders, ankles and more.

EXCELLENT MECHANICAL PROPERTY
The lowest oxygen index with an environmental chamber and MPC enables exceptionally high mechanical properties.

USER FRIENDLY INTERFACE
Simple coating procedure with easy steps and easily controllable pore shape, thickness, roughness.

ECONOMICAL ADVANTAGE
Cost effective compared with the conventional method and rapid fabrication.

MINIMIZED HEAD MODULE
Minimized head module to avoid interference with the objects and optimized coating parameters including Tilt by.

COMPLEX PARTS PRODUCTION
Porous coating possible using a simultaneous 5-axis motion.

MX-Standard Home Appliance
Application of 3D cooling channels

Improvements in cooling efficiency and noise reduction by production of a fan mold made by 3D cooling channels.

MX-Standard Automotive Mold
Reconfiguration of plastic injection mold

Reduction of lead time and redesign cost by reconfiguration of plastic injection molds using 3D technology.

Material: Classified

MX-Standard Automotive Mold
Corrosion-resistant material

30% life cycle enhancement by printing corrosion-resistant material on normal material substrate.

Coating Material: Hastelloy C-22

SEM of Porous Coating by MPC
MPC provides excellent mechanical properties and porosity suitable for industrial production requirements.

Medical Application
Porous coating of artificial hip joint and knee replacement.